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Abstract

For the sake of alleviating the in
uences of demand uncertainty in assemble-to-order (ATO) environments, the strategies
of regulating dealers’ forecast demands, determining appropriate safety stocks, and deciding the numbers of key machines
are usually adopted by manufacturers. In this paper, we propose a possibility linear programming model to manage
these production planning problems. The proposed model accomplishes forecasting adjustments, material management, and
production activities. Because of price 
uctuations, material obsolescence, and the time value of capital, the ambiguity
of cost is considered in the objective function of the model. We substituted the fuzzy objective function with three crisp
objectives: minimizing the most possible cost, maximizing the possibility of obtaining lower cost, and minimizing the risk
of obtaining higher cost. Zimmermann’s fuzzy programming method is then applied for achieving an overall satisfactory
compromise solution. Finally, an example is given to illustrate our model. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

A manufacturing strategy where materials and subassemblies are made or acquired according to forecasts,
while the �nal assembly of products is delayed until customer orders have been received is commonly referred
to as assemble-to-order (ATO) [4–6, 8, 13]. In such environments, a rolling schedule method is generally
applied for supervising the newest market information, satisfying customer requirements, and maintaining the
lowest inventory [1]. In a rolling schedule process, at period t, dealers are usually requested to place their
�rm order FDtp0 and perform their demand forecasts for the next few periods; e.g. 2 periods, FD(t+1)p1
and FD(t+2)p2 as shown in Table 1. FD(t+1)p1 and FD(t+2)p2 are used as references for ordering materials
with acquisition lead time lc=1 and 2 for �nal assembly that will be performed at period t + 1 and t + 2,
respectively. These forecasting demands are temporary and will be updated in the next forecasting cycle. That
is, at period t + 1, the dealer places a �rm order FD(t+1)p0 and presents forecasts FD(t+2)p1 and FD(t+3)p2,
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where FD(t+1)p1 is updated by �rm order FD(t+1)p0, and FD(t+2)p2 is updated to FD(t+2)p1. The remainder
can be deduced in the same manner. The production schedule is named a “rolling schedule” because demand
forecasts are updated periodically. Fig. 1 depicts the relative activities based on the time horizon in ATO
circumstances.
However, forecasts are rarely accurate. The accuracy of forecasts does a�ect the performance of the pro-

duction system. Underestimating causes material de�ciencies that may create �nal product stockouts. On the
other hand, overestimating will result in excess of materials which may lead to increases in inventory holding
costs. To compensate for forecasting inaccuracies, two material management processes are generally executed
by manufacturers. The �rst involves preparation of appropriate levels of material safety stocks to absorb the
in
uences of demand uncertainty. The second involves regulating forecast demands by modifying forecasting
activities. Besides, the numbers of key machines should be decided for forecasted production [2, 3]. However,
three managerial decisions are commonly determined subjectively in practice. Shieh [16] developed a semi-
analytical model to solve such situations. Considering the characteristics of product life cylce, Hsu and Wang
[9] modi�ed Shieh’s model to re
ect the dynamic nature of the market. All of the models take into account
crisp cost parameter values.
The managerial decisions in material management are essentially conditioned by product stockout costs and

inventory holding costs. In general, the pro�t rate is the decisive factor for the former, while material price
and the inventory holding rate in
uence for the latter. For capacity analysis, the idleness of key machines
has a vital impact upon investment utilization. Because of price 
uctuation in a dynamic market, material
obsolescence, and the time value of capital, assigning a set of crisp values for parameters is no longer
appropriate for dealing with such ambiguous decision problems. Fortunately, possibility distribution o�ers
an e�ectual alternative for proceeding with inherent ambiguous phenomena in determining cost parameters
[7, 10, 12, 14, 17, 20]. Therefore, in this study we constructed a possibilistic linear programming model to
determine appropriate safety stocks of materials, regulation of forecast demands and the numbers of key
machines. Next, we transformed the possibilistic linear programming model into a crisp multiple objective
linear programming model. Finally, Zimmermann’s fuzzy programming method [21] is applied to obtain a
composite single objective.
The remainder of this paper is organized as follows. In Section 2 we describe the production system. In

Section 3 we formulate and explain the production possibilistic programming model and the approach for
solving the proposed model. In Section 4 a numerical illustration is presented. Finally, Section 5 provides
some concluding remarks.

2. Problem statement

The production system considered in this paper is a single stage assemble-to-order factory. That is, all
materials are procured from suppliers, and the �nal assembly of the products is initiated after receiving the
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Fig. 1. Activities of material acquisition for �nal assembly at period t + 2.

dealers’ �rm orders. Some of the materials are unique to speci�c �nal products, while other materials are
common to two or more �nal products. The rolling schedule method is adopted. Demand forecasts provide
important managerial references for material acquisition for the future �nal assembly. Some other assumptions
in the production planning scenario are given as follows:
(1) The actual production quantities are determined by the status of on-hand material inventories and available

capacity sizes.
(2) Firm orders cannot be withdrawn if accepted by the manufacturer.
(3) If the system cannot completely produce the quantities ordered, backorder is not considered.
(4) Once material purchasing orders are released to suppliers, they cannot be revoked. Moreover, all purchased

materials are delivered on schedule and without shortage.
(5) The acquisition lead time for each material is constant.
The shortage penalty costs for �nal products not only comprises the explicit pro�t loss, but also includes

the implicit loss of a �rm’s goodwill, customers or market share. The inventory holding costs contain the cost
of capital tied up, insurance, price variation, and so on. The roughly estimated idle capacity penalty cost is
a�ected by the excess supply of key machines with respect to the actual production volume at each period.
In this study the shortage penalty costs for products, the holding costs per each unit of material and idle
capacity penalty costs are represented by triangular possibility distributions. The parameters of a triangular
possibility distribution are given as the optimistic, the most possibility, and the pessimistic values, which were
both estimated by experts.

3. Construction of production possibilistic programming (PPP) model

A production possibilistic programming model was built for regulating forecast demands reasonably, de-
termining appropriate material safety stock levels, and deciding the numbers of key machines. The objective
function considered takes into account the costs of product stockout, inventory holding, and capacity idleness.
These are the critical concerns when evaluating the performance of ATO implementation. Several balance
equations and necessary constraints are conceived to re
ect the production system.
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3.1. Notations and the formulation

In order to formulate the problem mathematically, the notations below are introduced.

Parameters and indices
t the planning horizon time period, t=1; 2; : : : ; T
c the type of materials, c=1; 2; : : : ; C
lc acquisition lead time of material c
!̃c inventory holding cost per unit of material c per unit time period
p the type of products, p=1; 2; : : : ; P

̃p stockout penalty cost per unit of unsatis�ed demand for product p per unit time period
j the type of key machines, j=1; 2; : : : ; J
�̃j idle capacity penalty cost per unit of key machine j per unit time period
CLj available capacity level per unit of key machine j
upc number of units of material c required for each unit of product p
FDtplc demand forecast for product p at period t, performed by dealers at period t − lc;

when lc=0, it expresses actual order quantities of product p at period t

Process variables
�p service level of product p
SOtp stockout quantities of product p at period t
Itc inventory level of material c at the end of period t
EI(t−1)c estimated inventory level of material c at the end of period (t − 1) performed at period (t − lc)
TUtpc total usage of material c for product p at period t
Qtclc order quantities of material c at period (t − lc) and the volume will be received at period t
APtp actual production quantities of product p at period t

Decision variables
SSc safety stock level of material c
�plc regulating factor applied to adjust the demand forecast for an uncertain order

of product p, FDtplc , performed by dealers at period (t − lc)
Kj the optimal number of key machine j

The production system, formulated as a linear program, can be expressed as follows:

Min: Z̃ =
T∑
t=1

P∑
p=l


̃p ∗ SOtp +
T∑
t=1

C∑
c=1

!̃c ∗ Itc +
T∑
t=1

J∑
j=1

�̃j ∗

CLj ∗ Kj −

P∑
p=1

APtp


 : (1)

Subject to APtp¿�p ∗ FDtp0; (2)

FDtp0¿APtp; (3)

P∑
p=1

APtp6CLj ∗ Kj; (4)

SOtp = FDtp0 − APtp; (5)
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Itc = I(t−1)c + Qtclc −
P∑
p=1

TUtpc; (6)

Qtclc = SSc +
P∑
p=1

FDtplc ∗ upc ∗ �plc − EI(t−1)c; (7)

EI(t−1)c = I(t−lc)c +
lc−1∑
i=1

Q[t−(lc−i)]ci −
lc−1∑
i=1

P∑
p=1

FD[t−(lc−i)]pi ∗ upc ∗ �plc ; (8)

TUtpc = APtp ∗ upc; (9)

I(t−1)c + Qtclc¿
P∑
p=1

TUtpc; (10)

06�plc62; (11)

�p; SOtp; Itc; EI(t−1)c; TUtpc; Qtclc ; APtp; SSc¿0 and Kj are integers;

where 
̃p = (

m
p ; 


o
p ; 


p
p ), all p; !̃c = (!mc ; !

o
c ; !

p
c ), all c; and �̃j = (�mj ; �

o
j ; �

p
j ), all j. All of these parameters

have triangular possibility distributions shown in Fig. 2.
The objective function is to minimize the sum of the product stockout costs, the material inventory holding

costs, and idle capacity penalty costs.
The relative constraints of production activities in each period are explained as follows. Eq. (2) guarantees

demand ful�llment greater than the required service level for product p at period t. Eqs. (3) and (4) represent
the characteristics of no end-products held in the ATO situation and restrict actual production quantities
according to the capacity of key machines in the system. Eq. (5) expresses stockouts derived strictly from
the di�erence between actual production quantities and �rm order quantities of product p at period t.
Material management in an ATO �rm is represented by the following constraints. Eq. (6) is the inventory

equilibrium equation that balances the inventory levels of material c at period t − 1; quantities received and
actual usage of material c at period t.

∑P
p=1 FDtplc ∗upc∗�plc represents the forecasted gross demand of material

c in period t. Consequently, Eq. (7) computes the order quantity of material c, Qtclc ; purchased at period t−lc,
derived from its safety stocks, gross demand, and estimated one period advanced ending inventory level. At
period t− lc, the estimated inventory level of material c at the end of period t−1 is determined by the ending
inventory at period t− lc, delivered quantities and forecasted gross demands from period t− lc to period t−1:
Eqs. (9) and (10) express the precision and the availability of material usage, respectively.

3.2. Approach to solving PPP model

With respect to the techniques for solving a linear programming problem with imprecise coe�cients in
the objective function, Rommelfanger [14] states that a fuzzy objective function should be interpreted as a
multiobjective demand. In general, an ideal solution to this problem does not exist. The �rst method to obtain
a compromise solution was proposed by Tanaka et al. [19]. They adopt a weighted average as a substitute
for the fuzzy objective with a special crisp compromise objective. The extreme values of the parameters will
have an impact on the e�ect of the weighting sum. An �-Pareto-optimal solution proposed by Sakawa and
Yano [15] restricts the fuzzy coe�cients to �-level-sets. Luhandjula’s [12] �-possibility e�cient solution is
a similar concept. As these authors do not explain the speci�cations of the levels � or � and use several
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Fig. 2. The triangular possibility distributions of 
̃p, !̃c, and �̃j .

restrictive assumptions, the application of these approaches may be limited in practice. Besides, when the goal
of the objective can be given, Tanaka and Asai [18] considered the objective function as a fuzzy constraint.
However, a given goal for the objective function is always di�cult for managers to decide.
Lai and Hwang [11] referred to portfolio theory and converted the fuzzy objective with a triangular possi-

bility distribution into three crisp objectives. According to their method, we represent Eq. (1) of our model as
Min: Z̃ = (zmx; zox; zpx) where x is a feasible solution for the proposed PPP model. Geometrically, the three
critical points (zmx; 0); (zox; 1); and (zpx; 0) in Fig. 3 fully describe a fuzzy objective. We therefore proceed to
minimize the fuzzy objective by pushing the three points toward the left. Solving the fuzzy objective becomes
the process of minimizing zmx; zox and zpx simultaneously.
However, there may exist a con
ict in the simultaneous optimization process. We substitute minimizing zmx;

maximizing (zmx−zox); and minimizing (zpx−zmx) for minimizing zmx; zox; and zpx: That is, we minimize
the most possible value of imprecise cost, zmx: Meanwhile, we maximize the possibility of obtaining lower
cost, zmx−zox; and minimize the risk of obtaining higher cost, zpx−zmx: The last two objectives are actually
relative measures from zmx: The three replaced objective functions still guarantee the above declaration of
pushing the possibility distribution toward the left in Fig. 3. In this way, our problem can be transformed into
a multiple objective linear programming (MOLP) as follows:

Min: z1 =
T∑
t=1

P∑
p=1


mp ∗ SOtp +
T∑
t=1

C∑
c=1

!mc ∗ Itc +
T∑
t=1

J∑
j=1

�mj ∗

CLj ∗ Kj −

P∑
p=1

APtp


 ;

Max: z2 =
T∑
t=1

P∑
p=1

(
mp − 
op ) ∗ SOtp +
T∑
t=1

C∑
c=1

(!mc − !oc) ∗ Itc

+
T∑
t=1

J∑
j=1

(�mj − �oj ) ∗

CLj ∗ Kj −

P∑
p=1

APtp


 ;

Min: z3 =
T∑
t=1

P∑
p=1

(
pp − 
mp ) ∗ SOtp +
T∑
t=1

C∑
c=1

(!pc − !mc ) ∗ Itc

+
T∑
t=1

J∑
j=1

(�pj − �mj ) ∗

CLj ∗ Kj −

P∑
p=1

APtp


 :



H.-M. Hsu, W.-P. Wang / Fuzzy Sets and Systems 119 (2001) 59–70 65

Fig. 3. The triangular possibility distribution of Z̃ :

There are many MOLP approaches to solving the above problem, such as goal programming, utility theory,
and so on. Since it is quite di�cult for managers to determine the requisite objective goals or establish their
utility functions, we suggest using Zimmermann’s fuzzy programming method with the normalization process
[21]. At �rst, the positive ideal solutions (PIS) and negative ideal solutions (NIS) of the three objective
functions should be obtained. These are

Min: zPIS1 =
T∑
t=1

P∑
p=1


mp ∗ SOtp +
T∑
t=1

C∑
c=1

!mc ∗ Itc +
T∑
t=1

J∑
j=1

�mj ∗

CLj ∗ Kj −

P∑
p=1

APtp


 ;

Max: zNIS1 =
T∑
t=1

P∑
p=1


mp ∗ SOtp +
T∑
t=1

C∑
c=1

!mc ∗ Itc +
T∑
t=1

J∑
j=1

�mj ∗

CLj ∗ Kj −

P∑
p=1

APtp


 ;

Max: zPIS2 =
T∑
t=1

P∑
p=1

(
mp − 
op ) ∗ SOtp +
T∑
t=1

C∑
c=1

(!mc − !oc) ∗ Itc

+
T∑
t=1

J∑
j=1

(�mj − �oj ) ∗

CLj ∗ Kj −

P∑
p=1

APtp


 ;

Min: zNIS2 =
T∑
t=1

P∑
p=1

(
mp − 
op ) ∗ SOtp +
T∑
t=1

C∑
c=1

(!mc − !oc) ∗ Itc

+
T∑
t=1

J∑
j=1

(�mj − �oj ) ∗

CLj ∗ Kj −

P∑
p=1

APtp


 ;

Min: zPIS3 =
T∑
t=1

P∑
p=1

(
pp − 
mp ) ∗ SOtp +
T∑
t=1

C∑
c=1

(!pc − !mc ) ∗ Itc

+
T∑
t=1

J∑
j=1

(�pj − �mj ) ∗

CLj ∗ Kj −

P∑
p=1

APtp


 ;
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Fig. 4. The membership functions of the objectives z1; z2, and z3.

Max: zNIS3 =
T∑
t=1

P∑
p=1

(
pp − 
mp ) ∗ SOtp +
T∑
t=1

C∑
c=1

(!pc − !mc ) ∗ Itc

+
T∑
t=1

J∑
j=1

(�pj − �mj ) ∗

CLj ∗ Kj −

P∑
p=1

APtp


 :

The linear membership function of these objective functions shown in Fig. 4 can be computed as

�z1 =




1 if z1¡zPIS1 ;

zNIS1 − z1
zNIS1 − zPIS1

if zPIS1 6z16zNIS1 ;

0 if z1¿zNIS1 ;

� z2 =




1 if z2¿zPIS2 ;

z2 − z NIS2

z PIS2 − z NIS2
if z NIS2 6z26z PIS2 ;

0 if z2¡zNIS2 ;

� z3 =




1 if z3¡zPIS3 ;

z NIS3 − z3
z NIS3 − z PIS3

if z PIS3 6z36z NIS3 ;

0 if z3¿zNIS3 :

Finally, we apply Zimmermann’s equivalent single-objective linear programming model (preference-based
membership functions of the objective functions) to obtain the overall satisfaction compromise solution.

4. Numerical investigation

An example is given to illustrate the proposed PPP model. The presumed factory produces two types of
products which are composed of six di�erent materials. C1 and C2 are common to both products, C3 and C4
are unique to product P1, as well as C5 and C6 which are unique to product P2. All materials are purchased
according to the strategies of safety stocks and forecast regulation. The �nal assembly of products is delayed
until the �rm orders have been received. The longest material acquisition lead time is two periods. The
relationship between product–material and acquisition lead time for each material is shown on the right of
Table 2.
Provided that the actual demand, FDtp0, for each product per period has an identical normal distribution

with mean �p=10 000 and standard deviation �p=1000. Moreover, assuming that the forecasting error rates
for each product, de�ned as (FDtplc−FDtp0)=FDtp0, are the same and normally distributed with mean �error = 0
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Table 2
The required data in the demonstration

Product type Demand distribution Forecasting ability Key machine Available capacity Material type
type per unit

N (�p; �p) N (�error ; �error) C1 C2 C3 C4 C5 C6

P1 (10 000, 1000) (0, 0.1) K1 600 1 1 1 1 0 0
P2 (10 000, 1000) (0, 0.1) K2 700 1 1 0 0 1 1

The acquisition lead time of each material 2 1 2 1 2 1

�p: mean demand per period for product p; �p: standard deviation of the demand per period for product p; �error : mean of the forecast
error; �error : standard deviation of the forecast error.

and standard deviation �error = 10%. Only two types of key machines, K1 and K2, are considered for the �nal
product assembly. At each period, the capacity per machine per period is 600 and 700 units, respectively. All
required data with respect to demand distribution, forecasting ability, capacity per key machine, acquisition
lead time for each material and the product structure are presented in Table 2.
In accordance with past sales records and integrating the judgement of marketing experts, as well as

the material control experiences of practitioners, managers approximate the possibility distributions for cost
parameters. (40; 30; 60) is supposed to be the imprecise unit stockout penalty costs for both products. It has
a triangular possibility distribution with the most possible value = 40, the most optimistic value = 30 and
the most pessimistic value = 60, respectively. In like manner, (1; 0:3; 2) and (1; 0:5; 2) are the imprecise unit
inventory holding costs and unit idle capacity penalty costs, respectively. The objective function with imprecise
cost coe�cients is expressed by the following equation:

Min:
T∑
t=1

P∑
p=1

(40; 30; 60) ∗ SOtp +
T∑
t=1

C∑
c=1

(1; 0:3; 2) ∗ Itc +
T∑
t=1

J∑
j=1

(1; 0:5; 2) ∗

CLj ∗Kj −

P∑
p=1

APtp


 :

According to the approach described in Section 3:2, we transform the original ambiguous objective function
into the following crisp multiple objective linear programming equation:

Min: z1 =
T∑
t=1

P∑
p=1

40 ∗ SOtp +
T∑
t=1

C∑
c=1

1 ∗ Itc +
T∑
t=1

J∑
j=1

1 ∗

CLj ∗ Kj −

P∑
p=1

APtp


 ;

Max: z2=
T∑
t=1

P∑
p=1

10 ∗ SOtp +
T∑
t=1

C∑
c=1

0:7 ∗ Itc +
T∑
t=1

J∑
j=1

0:5 ∗

CLj ∗ Kj −

P∑
p=1

APtp


 ;

Min: z3 =
T∑
t=1

P∑
p=1

20 ∗ SOtp +
T∑
t=1

C∑
c=1

1 ∗ Itc +
T∑
t=1

J∑
j=1

1 ∗

CLj ∗ Kj −

P∑
p=1

APtp


 :

Before we start to compute the optimal decision set, it is necessary to generate the required input data.
We supposed that the planning horizon is 12 months. For securing the robustness of our model, we randomly
generated 20 sets of �rm order quantities for each product using the presumed probability distribution. Each
set contains 12 actual months of demands. Likewise, 20 sets of forecasting error rates for each product can
be generated using the aforementioned normal distribution. Each set will include 24 forecasting error rates for
di�erent forecasting cycles, that is, lc=1 and 2, respectively. Based on our de�nition of the forecasting error
rate described above, we may obtain 20 sets of demand forecasts for the next two periods, FDtp1 and FDtp2,
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Table 3
Obtained results of the objective functions

The overall satisfaction level �∗ =0:8076

PIS for z1 391 869 PIS for z2 182 040 PIS for z3 125 262
NIS for z1 671 625 NIS for z2 119 287 NIS for z3 210 619
z∗1 445 694 z∗2 169 966 z∗3 141 685

The optimal cost is imprecise and has a triangular possibility distribution of (z∗1 ; z
∗
1 − z∗2 ; z

∗
1 + z

∗
3 ), i.e. (445 694; 275 728; 587 379).

Fig. 5. Possibility distribution of the optimal value of the fuzzy objective function.

respectively. Therefore, all required forecasts and demands in each forecasting cycle on a rolling schedule
basis can be placed in sequence into our model.
With these simulated input data, the objective function in our model is to minimize the sum of the 20

cost functions as shown in Eq. (1) with common decision variables: SSc; �plc and Kj. We applied LINDO
5:01 package on a PC-586 (Pentium-166) to solve the LP model. Following the previously described process,
a trial run was completed. After 20 trial runs, the summary results, including the positive and the negative
ideal solutions, as well as the compromise solutions of zi (i=1; 2; 3), and the resulting overall satisfaction
level, are shown in Table 3. Fig. 5 depicts the possibilistic distribution of the optimal value of the fuzzy
objective function. Apparently, z∗1 is the most possible cost, z

∗
1 − z∗2 (the most optimistic value) and z∗1 + z∗3

(the most pessimistic value) are the least possible cost. The cost obtained range provides a useful reference
for managers attempting to decide an operating budget in production planning. The optimal decision set of
the demand forecast regulation factors, the material safety stock levels, and the numbers of key machines
is shown in Table 4. The demand forecast regulation factors present a result in which the longer the fore-
casting cycle, the larger the regulating factor. This implies that forecasting error convolution e�ects exist in
Eq. (8) of our PPP model.
In the end, it is worth noting that the longer the acquisition lead time (C1; C3, and C5), the higher the

safety stock level. Meanwhile, the higher the commonality (C1, and C2), the lower the safety stock level.
Hence, we can conclude that shortening the length of acquisition lead time for materials and increasing
material commonality may have representative e�ects for reducing the in
uence of demand uncertainty. The
usual ways to achieve the preceding e�ects are taking into account the bill of material modi�cations and=or
product=process redesign, which adopt product modularity to obtain the e�ects of risk-pooling.

5. Conclusions

Determining the appropriate safety stock levels for assembly materials and regulating the forecast demands
are two strategies generally adopted by industries to moderate the e�ects of demand uncertainty in an ATO
environment. Moreover, managers would better decide the numbers of key machines in advance for reducing
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Table 4
The solutions for forecast regulation, material safety stock levels, and the numbers of key machines

Regulation values for demand forecasts: Product type

P1 P2

Forecasts with lead time=1 0.891 0.907
Forecasts with lead time=2 0.863 0.886
Service level 99.62%a 99.74%

Machine type

Key machine required K1 K2
Optimal quantities 17 13
Target capacity levels of key machines 10 200 9100
Capacity utilization levels 98.2% 93.5%

Safety stock levels for each material:

C1 C2 C3 C4 C5 C6
64.2%b 36.5% 70.1% 50.7% 69.2% 51.4%

a The service level is denoted the �ll rate of the average demand per month.
b Safety stock levels are represented by the percentage of the average requirements per month of materials.

capital wastes. This paper provides an analytical model to determine these managerial decisions under the
consideration of the ambiguous cost and the uncertain market demand. The proposed model integrates fore-
casting activities, material management, and production planning. Although solving possibilistic mathematical
models remains a concern, this research gives evidence that the proposed model is competent in dealing with
vague and imprecise data to solve the decision-making problems in ATO practices.
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